Non-Circular Proofs and Proof Realization in Modal Logic

Ren-June Wang
Computer Science
CUNY Graduate Center
365 Fifth Avenue, New York, NY 10016
rwang@gc.cuny.edu

Abstract

In this paper a complete proper subclass of Hilbert style S4 proofs, called non-circular, will be determined. This study originates from the investigation of formal connection between S4, as Logic of Provability and Logic of Knowledge, and Artemov’s Logic of Proof, LP, which later developed into Logic of Justification. One of the main theorems concerning LP is the realization theorem, which states that S4 theorems are precisely the formulas which can be converted to LP theorems with proper justificational objects substituting for modal knowledge operators. We extend the theorem by showing that on the proof level, non-circular proofs are exactly the class of S4 proofs which can be realized to LP proofs. The procedure which leads to the result also provides an alternative algorithm to achieve the realization theorem, and in the course of the discussions, a numerical version of LP, called S4^∆, is introduced, which is worth studying for its own sake.

1 Introduction

One of many applications of modal logic in computer science is the capacity to serve as logic of knowledge, helping to reason about the information transmissions in distributed systems (e.g. [15, 8, 13]), and about the intentional level of multiagent systems in general ([7, 20]). Artemov’s Logic of Proofs, LP ([1, 2]), later developing into Justification Logic ([11, 10, 3, 4]), enhances the expressivity of modal epistemic logic by introducing justification into the language. Formulas of the like \(t : F \) are introduced, meaning “\(t \) is a proof of \(F \)” or “\(t \) is a justification of \(F \)”, where \(t \) is a structural object, called proof term or proof polynomial, representing an explicit proof in formal arithmetic, or a justificational entity. One of the main theorems concerning LP is in regarding its formal relation with the modal logic S4. The realization theorem says that S4 theorems are exactly the formulas which can be turned into LP theorems by substituting suitable proof terms for the modal occurrences. Interpreted epistemically, the theorem shows that there is indeed justification structure embedded in S4, as logic of knowledge, which can only be explicitly disclosed in the formalism of LP. The realization theorem is also the motivation for the introduction of Logic of Proofs. As a long standing question concerning the arithmetic foundation of intuitionistic logic, Gödel took the first step to embed intuitionistic logic into S4, as logic of provability ([12]), and Artemov furnished LP with a formal arithmetic semantics and then showed the realization theorem to complete the project.

Accordingly, a constructive syntactical proof for the realization theorem is offering an algorithmic procedure to extract the reasoning processes, the justifications, from the logic of knowledge S4, and hence worth our further attention; and we find it is interesting and puzzling in the original procedure given in [1, 2] and later improved in [5], that it makes a detour to analyze cut-free Gentzen style S4 proofs, even though originally LP is introduced in Hilbert style and presented in a way that it is almost a realized counterpart of the standard Hilbert style S4 system; and proof terms, which are also suggested to be regarded as combinators in some general way ([2]), are best understood as encoding proofs in Hilbert style. So naturally, questions are raised: What happens to the Hilbert style S4 proofs? What is the formal relation between S4 proofs and LP proofs, if both in the style of Hilbert? Can we extend the result of the realization theorem to concern S4 proofs, instead just of theorems? Thus although the realization theorem is introduced with applicational importance, it seems to suggest a deeper insight of the proof structure of modal logic. One of the contributions of this paper is to determine a complete proper subclass of Hilbert style proofs of S4, called non-circular, and show that this is exactly the class of proofs which can be realized to LP proofs.

We will first give a characterization of non-circular S4 proofs and show that the class is complete in the sense that every S4 theorem has a non-circular proof. It is our
long-term goal to find an algorithm which can turn circular proofs directly into non-circular. But, partly since a proof-theoretical tool like cut elimination and normalization, which can generates normal form for Hilbert style proofs, is not available yet, right now we present something different. For, as we know, there is a natural way of translating proofs in Gentzen style to Hilbert style, we will show that, following the translation, the Hilbert style proofs obtained from cut-free proofs are non-circular. This result also gives us a hint as to why the detour takes place and why the original proof for the realization theorem works well.

In the course of the discussions, we will introduce a new logical framework $S4^\Delta$ to accomplish the above result. $S4^\Delta$ has numerical labels for each modal occurrence, which are designed to detect the non-circularity of $S4$ proofs. We will show that non-circular $S4$ proofs are precisely those that can turn into $S4^\Delta$ proofs by getting suitable numerical labels. Once we have $S4^\Delta$ proofs, we can translate them into LP proofs quite efficiently, and furthermore, we will show that every LP proof is obtained through such a translation. Putting all these ingredients together, we have the main proof realization result connecting non-circular $S4$ proofs and LP proofs, and the overall procedure also provides an alternative algorithm for the realization between theorems of $S4$ and LP.

We can view $S4^\Delta$ as an immediate logic between $S4$ and LP. It is a useful tool, as we can see later, for the study of the structures of the logics on the both sides; but it is also an interesting logic worth studying for its own sake. It could be understood as a logic of knowledge and the time that the reasoner takes to make the inferences.

Once we understand this in $S4^\Delta$, our work has more fruitful consequences with an epistemic interpretation.

2 The Systems

We begin with an introduction of the starting point of this project, that is, to establish a proof realization procedure between systems $S4$ and LP. $S4$ is a normal modal logic with language L_\square, built up from propositional letters P, boolean connectives \neg, \lor, \land, \to, and an unary modal operator \square. The standard $S4$ (Hilbert style) proof system is the following:

Axiom Schemes:

- $A0$ axiom schemes of classical propositional logic
 - $A1$ $\square(F \to G) \rightarrow (\square F \to \square G)$
 - $A2$ $\square F \rightarrow \square (\square F)$
 - $A3$ $\square F \rightarrow F$

Inference rules:

1. $F, F \rightarrow G \vdash G$ “modus ponens”
2. $\vdash \square F$, if $\vdash F$ “necessitation”

On the other side, LP can be viewed as a multimodal logic with proof terms Tm as modalities. Proof terms are built up from proof constants C, proof variables X, and basic proof operations: application \cdot, proof checker $!$ and indeterminate choice \ddagger. The grammar for the proof terms is: $t:=c|x|t\cdot t|t+t|\ddagger$, where $c \in C$ and $x \in X$, and if ϕ is a formula in the language of LP, denoted as L, so is $t: \phi$. The system of LP introduced in [2] is the following:

Axiom Schemes:

- $A0$ axiom schemes of classical propositional logic
 - $A1$ $s:(F \rightarrow G) \rightarrow (t:F \rightarrow (s+t):G)$
 - $A2$ $s:F \rightarrow !s:(s:F)$
 - $A3$ $s:F \rightarrow F$
 - $A4$ $s:F \rightarrow (s+t):F, s:F \rightarrow (t+s):F$

Inference rules:

1. $F, F \rightarrow G \vdash G$ “modus ponens”
2. $\vdash c:F$ for $c \in C$, if $\vdash F$ and F is an axiom “axiom necessitation”

Notice that in these systems, there is flexibility in the choice of the axiom scheme A0. Any complete classical propositional axiom schemes can be wrapped together to be A0. For the purpose of this paper, we will assume that all the systems discussed here employ the same A0 axiom scheme, and we will call the axiom schemes other than A0 modal axiom schemes.

At this point we give a rough definition of realization, which will be formally formulated later. Of a modal formula in L_\square, an LP-style formula is a realization, or some- times called an explicit counterpart since the justifications of knowledge statements are explicitly stated, if the formula is obtained from substituting proof terms for the modal occurrences in the modal formula. So we can see that the systems $S4$ and LP with only few exceptions are parallel to each other: every axiom scheme and rule in $S4$ has an additional axiom schemes can be wrapped together to be A0. For the purpose of this paper, we will assume that all the systems discussed here employ the same A0 axiom scheme, and we will call the axiom schemes other than A0 modal axiom schemes.

We will denote the system with the rule of axiom necessitation “$\vdash \square F$, if $\vdash F$, and F is an axiom” substituting for the R2 rule of necessitation in $S4$ as $S4^\prime$ and the system with axiom scheme $A4$ “$\square F \rightarrow \square F$” adding to $S4^\prime$ as $S4^{\prime\prime}$. For LP, we introduce the following variant ELp (Below both $o(s)$ and $\bar{o}(s)$ denote proof terms of the form of finite sum with s as its summand (e.g., t_1+s+t_2), and $o(s)=s$ is possible, whereas $\bar{o}(s)=s$ is not):

Axiom Schemes:

- $A0$ axiom schemes of classical propositional logic
 - $A1$ $s:(F \rightarrow G) \rightarrow (t:F \rightarrow o(s+t):G)$
 - $A2$ $s:F \rightarrow o(s):(s:F)$
A3 $s:F \to F$
A4 $s:F \to o(s):F$

Inference rules:

R1 $F, F \to G \vdash G$ “modus ponens”
R2 $\vdash o(c):F$ for $c \in C$, if $\vdash F$ and F is an axiom
“axiom necessitation”

The system with the axiom scheme A4 “$s:F \to o(s):F$” removed from ELP is called ELP°, and the system with the necessitation rule “$\vdash o(c):F$ for $c \in C$, if $\vdash F$” substituting for the R2 rule of axiom necessitation in ELP° is called GELP°. Systems S4, S4’ and S4° prove the same set of theorems, but systems LP, ELP, ELP° and GELP° do not. However, every S4 theorem, and hence every S4’ and S4° theorem, can be realized to a theorem in these systems of LP variants, and there would be syntactical translations between proof terms such that theorems in one of these systems are translated into theorems in another one. The reason that we introduce the system ELP, and the notations $o(s)$ and $o(s)$ will be clear when a proof realization procedure is formally discussed.

Now we can see there are complete parallelisms between systems S4 and GELP°, between S4’ and ELP°, and between S4° and ELP, and it is natural to expect that these parallelisms can be extended to between proofs. We expect there is a line-to-line proof realization procedure, by which we mean a procedure to establish a set of proof terms such that a proof in S4, S4’ or S4°, can be turned into a proof in GELP°, ELP°, or ELP, respectively, and, furthermore, an axiom is turned into its corresponding explicit axiom, and a formula derived by a rule into a formula derived by its corresponding explicit rule.

However, life is not that simple. As it is shown in the following example, not all proofs in the S4-systems have their realizations should be explicit axioms:

Removing $\Box P$, and finally ϕ_5 is derived from ϕ_3 and ϕ_4 through classical propositional logic.

Given that ϕ_1 and ϕ_2 are instances of modal axioms, their realizations should be explicit axioms:

$\phi_1 \equiv s: (\bigcirc (P \rightarrow Q)) \rightarrow (t: P \rightarrow o(s,t):Q)$
$\phi_2 \equiv w: (Q \rightarrow P) \rightarrow v: Q \rightarrow o(u,v):P$

for some proof terms s, t, u, v, and since syllogisms are applied, $v = o(s,t)$ and $t = o(u,v)$ must be the cases. Now due to the complexity of proof terms, no solution to these equations is possible, and hence the naive proof realization procedure doesn’t work for this instance. In the next section we will give the definition of non-circular proofs which is hinted at this example.

3 Non-Circular Proofs

Our following discussions of Hilbert style proofs will be based on the analysis of formula occurrences, and hence a formal definition of occurrences and formulas at occurrences will be helpful and make clear our arguments. We will give an abstract description of paths of the parse tree of a formula ϕ to denote the positions, occurrences, of its subformulas, and the function $\phi(x)$ to denote the subformula at the occurrence x. The language of occurrences O are sequences of letters a, b, and \star. The symbol (\cdot) doesn’t belong to the formal syntax but will sometimes be written within a sequence to increase readability. We use a, b to denote the left and right positions of a binary operator, and \star to denote the position of the operand of an unary operator. o denotes a metavariable for a connective.

Definition 3.1 (occurrence).

Let $\phi \in L_\Box$. We define simultaneously the set of occurrences in ϕ, $O(\phi)$, and the function $\phi(\cdot)$ which maps an occurrence in ϕ to the subformula of ϕ at the occurrence. Let ϵ be the empty sequence.

1. $\epsilon \in O(\phi)$ and $\phi(\epsilon) = \phi$.
2. If $x \in O(\phi)$ and $\phi(x) = (\psi \circ \theta)$, then $a.x, a.x.b \in O(\phi)$ and $\phi(a.x) = \psi$, and $\phi(a.x.b) = \theta$.
3. If $x \in O(\phi)$ and $\phi(x) = (\psi \circ \theta)$, then $x.a, x.b \in O(\phi)$ and $\phi(x.a) = \psi$, and $\phi(x.b) = \theta$.
4. Furthermore, we extend the definition on formulas to sequences of formulas, such as proofs. Let D be a sequence of n formulas in L_\Box and ϕ be the k-th element of D, then $i \in O(D)$ for any $1 \leq n$ and $D(k) = \phi$.

Thus suppose $(A \rightarrow \Box B) \rightarrow A$ is the second element of a proof D, then $2ab, \star \in O(D)$ and $D(2ab, \star) = B$.

Here are some facts about the notion of occurrence $(x, y, z \in O)$:

- $c.x \equiv x \equiv x.c,$
Definition 3.2. (proof equivalence relation).
Let \(\mathcal{D} \) be a proof in \(S4, S4' \) or \(S4'' \), and \(k \) a natural number. An equivalence relation \(\sim \) on \(\mathcal{O}(\mathcal{D}) \) is called a proof equivalence relation if it satisfies:

1. if \(\mathcal{D}(k) = A^n \) with \(A \) an axiom scheme, \(\rho \) a propositional letter substitution, and \(A(x) = A(y) \in \mathcal{P} \) for \(x, y \in \mathcal{O}(A) \), then \(k.x \sim k.y \).
2. if \(\mathcal{D}(k) \) is a substitutional instance of the axiom scheme \(A_2 \), i.e. \(\mathcal{D}(k) = \square \phi \rightarrow \square (\square \phi) \), then furthermore \(k.a \sim k.b \).
3. if \(\mathcal{D}(k) = \psi \) is derived from \(\mathcal{D}(i) = \phi \) and \(\mathcal{D}(j) = \phi \rightarrow \psi \) by modus ponens, then \(k.\ast \sim j.a \).
4. if \(\mathcal{D}(k) = \square \phi \) is derived from \(\mathcal{D}(i) = \phi \) by necessitation (in \(S4 \) or axiom necessitation (in \(S4' \) or \(S4'' \)), then \(k.\ast \sim i \).

Definition 3.3. (label function)
Given \(\mathcal{D} \) a formula or a sequence of formulas in \(L_\varphi \), and \(I \) a label set, we call \(l : \mathcal{O}(\mathcal{D}) \rightarrow I \) a label function on \(\mathcal{D} \). Any nonempty set can be a label set.

Each label function \(l \) on \(\mathcal{D} \) induces an equivalence relation \(\sim \) on \(\mathcal{O}(\mathcal{D}) \) such that for any \(x, y \in \mathcal{O}(\mathcal{D}) \), \(x \sim y \) iff \(\mathcal{D}(x) = \mathcal{D}(y) \), and for any \(x, z \in \mathcal{D}(x), l(x, z) = l(y, z) \).

Definition 3.4. (proof label function)
A label function \(l \) on a proof \(\mathcal{D} \) in \(S4, S4' \) or \(S4'' \) is a proof label function if the induced equivalence relation \(\sim \) is a proof equivalence relation.

\(^2\)We equate axiom schemes with their simplest propositional letter substitutional instances.

Definition 3.5. For two label functions \(l, l' \) on \(\mathcal{D} \), we say \(l' \) covers \(l \) if for any \(x, y \in \mathcal{O}(\mathcal{D}), x \sim y \), whenever \(x \sim y \).

Lemma 3.6. If \(l \) is a proof label function on a proof \(\mathcal{D} \), and \(l' \) is a label function on \(\mathcal{D} \) such that \(l' \) covers \(l \), then \(l' \) is also a proof label function on \(\mathcal{D} \).

Lemma 3.7. Given a proof \(\mathcal{D} \), and label functions \(l, l' \) on \(\mathcal{D} \), if for any \(x, y \in \mathcal{O}(\mathcal{D}) \) with \(x \sim y \), \(l'(x) = l'(y) \), then \(l' \) covers \(l \).

According to the definition, a proof can be supplied with more than one proof label function. A proof label function can be as coarse as the label function which assigns the same label to every modal occurrence. But the finer the proof label function with respect to the relation of covering, the more essence of the structure of the proof preserved in the proof label function.

As our earlier observation of the unrealizable proof fragment shows, what matters is some specific relations among m-formula occurrences in modal axioms. We will call the collection of the relations in concern the stamp of the modal logical system.

Definition 3.8. (the standard stamp of \(S4 \))
A stamp \(A \) of a modal logical system is a collection of binary relations \(\overrightarrow{\sim} \) on \(\mathcal{O}(A) \) with \(A \) a modal axiom scheme.

The standard stamp of \(S4 \) and \(S4' \) include (the scheme names stand for the schemes):

\[\overrightarrow{\sim}_A = \{ (a, b, b), (b, a, b, b) \}, \]
\[\overrightarrow{\sim}_A = \{ (a, b) \}, \]
and, one more for \(S4'' \):
\[\overrightarrow{\sim}_A = \{ (a, b) \}. \]

That is, the standard stamp is concerned with the directed relations from \(\square \overrightarrow{A} \) to \(\square \overrightarrow{G} \) and from \(\overrightarrow{F} \) to \(\overrightarrow{G} \) in the axiom scheme \(\square \overrightarrow{A} \rightarrow \square (\overrightarrow{F} \rightarrow \square \overrightarrow{G}) \), from \(\overrightarrow{F} \) to \(\overrightarrow{F} \) in \(\square \overrightarrow{F} \rightarrow \square \overrightarrow{F} \), and from the first \(\overrightarrow{F} \) to the second \(\overrightarrow{F} \) in \(\overrightarrow{F} \rightarrow \square \overrightarrow{F} \).

Below \([x]^l\) denotes the equivalence class induced by the label function \(l \) and containing the occurrence \(x \).

Definition 3.9. Given a proof label function \(l \) on \(\mathcal{D} \) in a system with stamp \(A \), \(\overrightarrow{\sim}_A \) is a relation defined on the equivalence classes induced by \(l \) such that if \(\mathcal{D}(k) \) is an axiom instance of an axiom scheme \(A \) and \(x \overrightarrow{\sim}_A y \) with \(\overrightarrow{\sim}_A \in A \), then \([k.x]^l \overrightarrow{\sim}_A [k.y]^l \).

A chain of \(\overrightarrow{\sim}_A \)-induced equivalence classes, \(E_1, E_2, \ldots, E_n \), with respect to the relation \(\overrightarrow{\sim}_A \), namely, \(E_i \overrightarrow{\sim}_A E_{i+1} \) for any \(E_i \) in the chain, is circular, if there are \(i \neq j \), \(E_i = E_j \).

Now we give the formal definition of non-circular proof.
Definition 3.10 (non-circular proof).
A proof label function \(l \) on a proof \(D \) in a system with stamp \(A \) is \(A \)-circular if there is a chain of \(l \)-induced equivalence classes with respect to \(\sim \), which is circular; otherwise it is \(A \)-non-circular.

A proof \(D \) is \(A \)-non-circular if we can define an \(A \)-non-circular proof label function on \(D \).

So given a modal logical system, such as S4, there is more than one stamp that can be defined. The standard stamp that we are going to discuss is not the only one. But what is interesting about this stamp, and others for S4’ and S4”, is that we can be sure that the classes of non-circular proofs with respect to these stamps are complete. A proof of this result is the aim of the next section.

We will skip mentioning the stamps or what are the stamps \(A \) referring to in the ensuing discussions, which are presumed to be the standard as defined in Definition 3.8.

4 S4\(_\Delta \) and the Completeness of Non-Circular Proofs

4.1 S4 and S4\(_\Delta \)

The main goal of this section is to establish the completeness of non-circular proofs, and for this purpose, we introduce logical systems S4\(_\Delta \), and its variants. There are several reasons for this introduction. First of all, in the above section we give a general definition of non-circular proof with the label function as an auxiliary tool. The non-circularity of proofs essentially depends on the relations between \(m \)-formulas in the proof. However, it is possible to employ a structural label set to detect the non-circularity of proofs, and the set of natural number is a good candidate. Secondly, it is always easier to work on formulas with their labels built in as part of the formulas, instead of to work on formula occurrences and then consider their labels. Finally, since S4\(_\Delta \) is introduced as a logical system, hence logical techniques can be applied to deal with the relevant problems. We need more properties of proof label function.

Definition 4.1 (increasing proof label function).
A numerical proof label function \(\Delta : m(D) \rightarrow \mathbb{N} \) on a proof \(D \) in S4, S4’, or S4” is increasing if \(\Delta(k,x) < \Delta(k,y) \), for any substitutional instance \(D(k) \) of an axiom scheme \(A \), and any occurrences \(x \xrightarrow{\Delta} y \) with \(x \in A \).

Lemma 4.2. \(\Delta \) is an increasing proof label function on a proof \(D \), if and only if for any \(x, y \in \mathcal{O}(D) \), if \([x]^{\Delta} \xrightarrow{\Delta} [y]^{\Delta} \), then \(\Delta(x) < \Delta(y) \).

Proof. By the definitions of increasing proof label function and the fact that if \(w \xrightarrow{\Delta} z \), then \(\Delta(w) = \Delta(z) \).

Proposition 4.3. A proof \(D \) is non-circular if and only if there exists an increasing proof label function \(\Delta \) on \(D \).

Proof. When \(\Delta \) is increasing, by the Lemma 4.2, it immediately follows that every chain of \(\Delta \)-induced equivalence classes with respect to \(\sim \) is non-circular. Hence every increasing proof label function is non-circular. On the other hand, when \(D \) is non-circular, there exists a proof label function \(l \) on \(D \) such that every chain of \(l \)-induced equivalence classes with respect to \(\sim \) is non-circular. Let \(S \) be the set of these chains. \(S \) will be a finite set of finite chains. We define the function \(\Delta_l : m(D) \rightarrow \mathbb{N} \) such that \(\Delta_l(x) = \max \{ i \mid [x]^i \text{ is the } i\text{-th element of a chain in } S \} \). Since \(\Delta_l(x) = \Delta_l(y) \) for any \(x \xrightarrow{\Delta} y \) in \(m(D) \), \(\Delta_l \) covers \(l \) and hence \(\Delta_l \) is a proof label function. Also, since \(\Delta_l(x) < \Delta_l(y) \) for any \([x]^i \xrightarrow{\Delta} [y]^i \), \(\Delta_l \) is increasing. This completes the proof.

Given a non-circular proof label function \(l \) on a proof \(D \), we can actually build an increasing proof label function such that different initial equivalence classes, equivalence classes without predecessors, have different number labels.

Definition 4.4. An equivalence class \([x]^i \) is initial if and only if there’s no \([y]^j\) such that \([y]^j \xrightarrow{\Delta} [x]^i\).

Corollary 4.5. Let \(S \) be the set of initial equivalence classes in \(D \) and \(f : S \rightarrow \mathbb{N} \). There exists an increasing proof label function \(\Delta \) covering \(l \) such that for any \([x]^i \in S\), \(\Delta(x) = f([x]^i) \).

Proof. Let \(d = \max \{ f([x]^i) \mid [x]^i \in S \} \), and \(\Delta_l \) be the increasing function built based on the procedure given in the above Proposition 4.3. Then the numerical function \(\Delta \) such that for any \(x \in m(D) \), \(\Delta(x) = f([x]^i) \) if \([x]^i \) is initial, otherwise \(\Delta(x) - \Delta_l(x) + d \) will do the job.

Now we introduce a new family of languages. Let \(I \) be a label set. The language \(L_I \) is an extended propositional language with the following non-propositional formulation rule: if \(\phi \in L_1 \) and \(u \in I \), \(\Box u \in L_I \). We will also call a formula of the form \(\Box u \) m-formula, and call the label \(u \) the principal label of the formula, denoted as \(v(\Box u) \).

The Definition 3.1 can be well-adapted to define formula occurrences of formulas or sequences of formulas in \(L_I \). The only needed change is to take care of the new m-formulas: if \(x \in \mathcal{O}(\phi) \) and \(\phi(x) = (\Box u) \), then \(x, * \in \mathcal{O}(\phi) \) and \(\phi(x,*):=\psi \).

Later in this paper we will see several translations between formulas and proofs in \(L_\Box \) and \(L_I \). If not stated otherwise, they are all presumed to fix propositional letters and commute with boolean connectives. In other words, the purpose of these translations is to add or remove labels, or to switch the labels from one to another. In fact, we can view
a realization as a translation of this kind with proof terms as labels.

Let D be a sequence of formulas in L_D and F be a sequence of formulas in L_I with I a label set.

Definition 4.6.

For any label function $l: m(D) \to I$, an induced translation, also denoted as l, from D to a sequence of formulas D^l in L_I is such that for any $x \in m(D)$, $D^l(x) = \Box D^l(x, \cdot)^y$ with $u = l(x)$.

A \Box-translation on F is a translation such that for every $x \in m(F)$, $F^x = \Box F^x(x, \cdot)$.

l_F is a label function on F^x induced by F such that for every $x \in m(F^x)$, $l_F(x) = \nu$. l_F is well-defined since $x \in m(F^x)$ if and only if $x \in m(F)$, and we have the following equivalence results:

Lemma 4.7. For $x, y \in O(D), x \sim y$ iff $D^l(x) = D^l(y)$.

Proposition 4.8. $F = D^l$ iff $F^x = D^l(x)$.

S^Δ is a logical system defined on the set of formulas L_Δ, a case of L_Δ languages with natural numbers as labels. The system is the following:

Axiom Schemes:

- A_0 axiom schemes of classical propositional logic

 - A_1 $\Box(F \to G)^i \to (\Box F^j \to \Box G^h), i, j < k$

 - A_2 $\Box F^i \to (\Box F^j), i < j$

 - A_3 $\Box F^i \to F$

Inference rules

- R_1 $F, F \to G \vdash G$ "modus ponens"
- R_2 $\vdash \Box F^i$ for any i, if $\vdash F$ "necessitation"

System S^Δ is S^Δ with necessitation replaced by axiom necessitation "$\Box F^i$" for any i, if $\vdash F$ and F is an axiom; and $S^{\Delta/\Delta}$ is $S^{\Delta/\Delta}$ with the addition of the axiom scheme A_4, "$\Box F^i \to \Box F^j, i < j$".

An interesting and apparent feature of the system is that for a formula being an axiom instance, the number labels in the formula have to satisfy some condition, and this feature is just the key to the success of the following theorem concerning the formal relations between proofs in variant S_4-systems and S^Δ-systems.

Theorem 4.9. A proof D in S_4, S^Δ, or $S^{\Delta/\Delta}$ is non-circular if and only if there is a proof label function $\Delta: m(D) \to \mathbb{N}$ such that D is a proof in S^Δ, S^Δ, or $S^{\Delta/\Delta}$, respectively.

Proof. Given $D^\Delta = \neg F$ a proof in S^Δ [$S^{\Delta/\Delta}$, $S^{\Delta/\Delta}$], it is not difficult to check that D is a proof in S_4 [S^Δ, $S^{\Delta/\Delta}$] and that $\Delta = \Delta(F^x, \cdot)$ is an increasing proof label function on D since it needs to satisfy the numerical conditions set on the modal axiom schemes of the system. Hence D is non-circular. For the other direction, suppose that D is a non-circular proof in S^Δ [$S^{\Delta/\Delta}$, $S^{\Delta/\Delta}$]. By Proposition 4.3, an increasing proof label function Δ defined on D exists, and hence all we need to do is to check if D^Δ is a proof in $S^{\Delta/\Delta}$ [$S^{\Delta/\Delta}$, $S^{\Delta/\Delta}$]. Since Δ is a proof label function, then it can be sure by Lemma 4.7 that whenever ϕ is an axiom or derived by a rule application in D, so is ϕ^Δ in D^Δ except that ϕ is a modal axiom. But since Δ is also increasing, conditions on modal axioms will be fulfilled, and hence D^Δ is a proof in $S^{\Delta/\Delta}$ [$S^{\Delta/\Delta}$, $S^{\Delta/\Delta}$].

Corollary 4.10. $F = \Delta$ is a proof in $S^{\Delta/\Delta}$, or $S^{\Delta/\Delta}$, if and only if $\Delta (= \nu)$ is an increasing proof label function on D ($= F^x$).

4.2 Completeness of Non-Circular Proofs

As mentioned in the introduction, the long-term goal of this project is to establish a direct procedure turning Hilbert style circular proofs into non-circular, which the completeness of non-circular proofs immediately follows. Right now we will deal with the problem by analyzing Gentzen style proofs. We first supply the Gentzen systems that corresponds to S_4 and $S^{\Delta/\Delta}$, respectively. Here are some notations. A sequent $\Gamma \Rightarrow \Gamma'$ is a pair of finite multisets Γ, Γ' of formulas. It is convenient for us to view a sequent as a formula $C_1 \to \ldots \to (C_n \to \lor \Gamma') \ldots$. Given a multiset $\Gamma = \{C_i\}$ of formulas in L_D, $\Gamma = \{C_i\}$, $\Gamma = \{C_i\}$ of formulas in L_Δ. $\Gamma' = \{C_i\}$ for j_i a number in the multiset ν. ν is the number of formulas in Γ. The Gentzen system S_4G is:

The only axiom is that $P \Rightarrow P$, for a propositional letter P.

The rules for weakening (W) and contraction (C)

- $\text{LW} \quad \Gamma \Rightarrow \Gamma'$, $\text{RW} \quad \Gamma \Rightarrow \Gamma' \quad \Gamma \Rightarrow \Gamma', \Delta$
- $\text{LC} \quad A, \Delta \Rightarrow \Gamma' \quad \Delta \Rightarrow \Gamma' \quad A \Rightarrow \Gamma' \quad A \Rightarrow \Gamma'$

The classical logical rules (i=01):

- $\text{L} \quad \Gamma \Rightarrow \Gamma', \Delta \Rightarrow \Gamma'$, $\text{R} \quad \Gamma, \Delta \Rightarrow \Gamma' \quad \Gamma \Rightarrow \Gamma'$, $\text{L} \quad A \Rightarrow \Gamma' \quad \text{R} \quad A \Rightarrow \Gamma'$

- $\text{L} \quad \Gamma \Rightarrow \Gamma', \Delta \Rightarrow \Gamma'$, $\text{R} \quad \Gamma \Rightarrow \Gamma', \text{L} \quad \Gamma \Rightarrow \Gamma'$, $\text{R} \quad \Gamma \Rightarrow \Gamma', \Delta$

- $\text{L} \quad \Gamma \Rightarrow \Gamma', \Delta \Rightarrow \Gamma'$, $\text{R} \quad \Gamma \Rightarrow \Gamma', \Delta \Rightarrow \Gamma'$

The modal rules:

- $\text{L} \quad A, \text{L} \Rightarrow \Gamma' \quad \text{R} \quad \Box \Delta \Rightarrow \Gamma'$

S_4G as listed above is similar to the propositional fragment of G_1's in [16], except that it is a system for the language with single modality \Box, and with the negation \neg instead of the falsehood \bot. It is therefore complete with respect to the standard Hilbert style system of S_4.

S4\,\Delta G is a Gentzen style proof system defined on formulas in \(L_{\Delta} \). Its axiom and rules are the same as the ones in S4G except that its modal rules are the following:

\[
\begin{align*}
\text{L} & : A, \Gamma \Rightarrow \Gamma', \quad \text{for any } i \\
\text{R} & : \Box \Gamma' \Rightarrow \Box \Delta', \quad \text{for any } i \text{ when } |\Gamma| = 0,
\end{align*}
\]

There are two main steps in our procedure of proving the completeness of non-circular proofs. The first step is to show that every S4G proof can be turned into an S4\,\Delta G proof, and the second is that S4\,\Delta G is sound with respect to S4\,\Delta. In the following, when we adjust m-formula occurrences’ number labels in an S4\,\Delta G proof, we adjust all the related formulas of premises and conclusions of rules to the same number. Obviously S4G is a cut-free system, and recall that cut-free proofs respect the polarity of formulas.

Lemma 4.11. If in an S4\,\Delta G proof we adjust the number labels such that the principal labels of negative m-formula occurrences become smaller, and those of positive m-formula occurrences become larger, the result will still be an S4\,\Delta G proof.

Proof. The only applications of inference rules will be affected are the applications of the right modal rule. However, the numerical condition on the rule is still fulfilled after the adjustment.

Proposition 4.12. Every S4G proof \(\mathcal{G} \) can be translated to a proof \(\mathcal{G}^\Delta \) in S4\,\Delta G by providing suitable numerical labels for m-formula occurrences in \(\mathcal{G} \).

Proof. The proof is quite straightforward. We can give suitable labels to an S4G proof by induction on the depth of the proof-tree. There are some cases, like applications of two-premise inference rules, in which the labels need adjustments. In these cases, we can apply the previous lemma to adjust the number labels in the premises of an application and the proof-trees above the premises such that the labels of m-formulas in the premises which relate to the same formula in the conclusion match to each other. Since S4G is cut-free, so this always can be done, and then the two-premise inference rules of S4\,\Delta G can be well applied.

Nevertheless, there exists a very efficient method. We can just let all negative formula occurrences have the label 0, and all positive formula occurrences have the label equal to the number of m-formula occurrences in the S4G proof. Then the numerical conditions on all the applications of the right modal rules will be satisfied.

Notice that the efficient method mentioned above won’t work when the modal rule have conditions such that the principal label of a positive m-formula relies on the principal labels of other positive m-formulas, like the Gentzen system for S5, which we will discuss later.

Proposition 4.13. Every S4\,\Delta G proof can be converted to an S4\,\Delta proof with the same conclusion.

Proof. The procedure is to convert each application of an inference rule (including axioms) to a sequence of formulas. For the propositional part, we can pick up the procedure listed in [6] and for the applications of the left modal rule L, the translation is not difficult to figure out. Here we only check that there is such a conversion for applications of the right modal rules, R. We need the following lemma:

Lemma 4.14. For \(|\Gamma| > 0 \) and \(i > \max(\max(i)+1, e) + |\Gamma| - 1 \), \(\Box(\Box \Gamma' \Rightarrow A)^e \Rightarrow (\Box(\Box \Gamma' \Rightarrow A)^e) \) is provable in S4\,\Delta.

Proof. It’s equivalent to prove that for any \(|\Theta| \geq 0 \) and \(i > \max(\max(i)+1, e) + |\Theta| \), \((\Box(\Box \Gamma' \Rightarrow A)^e) \Rightarrow (\Box(\Box \Gamma' \Rightarrow A)^e) \) is provable in S4\,\Delta. We will prove this by induction on \(|\Theta| \). Noticed that for any multiset \(\Theta \), if number \(e' > \max(e, j+1) \), then \(\Box(\Box \Gamma' \Rightarrow (\Box \Theta' \Rightarrow A)^e) \Rightarrow (\Box(\Box(\Box \Gamma' \Rightarrow A)^{e'}) \Rightarrow (\Box(\Box \Gamma' \Rightarrow (\Box \Theta' \Rightarrow A)^{e'}) \) is an A1 axiom, and \(\Box \Gamma' \Rightarrow (\Box(\Box \Gamma' \Rightarrow A)^{e'}) \) is an A2 axiom, and therefore \(\Box(\Box \Gamma' \Rightarrow (\Box \Theta' \Rightarrow A)^{e'}) \Rightarrow (\Box(\Box \Gamma' \Rightarrow A)^{e'}) \) is provable in S4\,\Delta. When \(\Theta \) is empty, let \(e' = i > \max(e, j+1) \). Then \((\Box(\Box \Gamma' \Rightarrow A)^e) \Rightarrow (\Box(\Box \Gamma' \Rightarrow A)^e) \) holds, and hence the base case of \((\Box) \) is proved. For the induction step, suppose \(|\Theta| = k+1 \) and \(\Box \Theta' = \Box \Theta'' \sqrt{\Box C''} \). Let \(e' = \max(j+1, e) + 1 \), and hence \((**) \) holds. Now since \(i > \max(\max(i)+1, e) + |\Theta| \), \(e' = \max(\max(i)+1, e) + 1 \), and \(|\Theta'| \geq \max(\max(i)+1, e) + |\Theta| \). By Induction Hypothesis, \(\Box(\Box \Theta' \Rightarrow A)^{e'} \Rightarrow (\Box \Theta' \Rightarrow A)^{e'} \), which is equivalent to \(\Box(\Box \Theta'' \Rightarrow (\Box \Theta' \Rightarrow A)^{e'}) \Rightarrow (\Box(\Box \Theta'' \Rightarrow (\Box \Theta' \Rightarrow A)^{e'}) \), holds. Then by classical propositional logic, \((**) \) is provable in S4\,\Delta. This finishes the induction step and the proof.

Since if \(\Box \Gamma' \Rightarrow A \) is provable in S4\,\Delta, when \(\Gamma \) is empty, by necessitation, \(\Box A \) is provable for any \(i \), and when \(\Gamma \) is not empty, \(\Box(\Box \Gamma' \Rightarrow A)^{\infty} \) is provable, and then, following the procedure in the previous lemma, we can produce an S4\,\Delta proof for \(\Box \Gamma' \Rightarrow A \), whenever \(i > \max(i)+|\Gamma| \). This completes the proof of Proposition 4.13.

Now we can prove one of few structural properties concerning Hilbert style proofs.

Theorem 4.15. Every S4 theorem has a non-circular proof.

Proof. Let \(\phi \) be an S4 theorem. Since S4G is complete, an S4G proof \(\mathcal{G} \) of \(\phi \) exists. Then following Proposition 4.12, we can turn the S4G proof into an S4\,\Delta G proof \(\mathcal{G}^\Delta \) by assigning suitable numerical labels to m-subformulas. Now
following the procedure in Proposition 4.13, we can translate the $S4^4G$ proof into an $S4^4$ proof F. Then F^\square is a non-circular proof of ϕ. Moreover, F is the Hilbert style proof translated from G by the procedure similar to the one in Proposition 4.13 but without the need of concerning numerical labels.

We also have the realization theorem for $S4^4$:

Corollary 4.16. For a formula $\phi \in \mathcal{L}_\square$, ϕ is an $S4$ theorem if and only if there is a numerical label function Δ on ϕ such that $\Delta \phi$ is an $S4^4$ theorem.

4.3 From $S4^4$ to $S4^4$

The aim of this subsection is to provide an algorithm that translates $S4^4$ proofs into $S4^4$ proofs. This algorithm is needed as an intermediate step for the realization theorem for LP, and also helps to establish the Δ-version of realization theorem for $S4^4$ and $S4^4$. We will provide two methods: one is called inductive and the other structural. The structural is efficient but limited to generalize.

We need to do some preliminary work. First, we will presuppose that in the $S4^4$ proof in discussion every $R2$-formula, the formula derived by necessitation, is initial. This is the case when the proof is translated from an $S4^4G$ proof by the procedure given above. However, in general if an $R2$-formula $\Box\phi$ has predecessors, we can extend the proof by adding formulas including $\Box\phi\theta\phi\rightarrow\phi$, $\Box(\phi\rightarrow\phi)\theta\rightarrow(\Box\phi\theta\rightarrow\Box\phi)$, $\Box\phi\rightarrow\Box\phi$, and a proof of the tautology $\phi\rightarrow\phi$ if it is not an axiom.

Second, since now in our proof every $R2$-formula is initial, we can adjust the labels in the proof such that the number labels of these initial formulas have the numbers we would like them to have, as suggested by Corollary 4.5. In the following, given an $S4^4$ proof, before we extend the proof to an $S4^4$ proof, we will firstly modify the number labels such that if $\Box\phi\theta\phi$ is an $R2$-formulas derived from the k-th element of the proof, then $i=k$ for the structural method, and $i=4l$ for the inductive method, where $\Box\phi\theta\phi$ is the conclusion of the j-th application of the necessitation rule.

We first see the inductive method. A lemma is in order. Here are some notations. Let F be an $S4^4$ or $S4^4$ proof, and $l: F \rightarrow \mathbb{N}$ be the length function of F ($l(\phi) = k$ provided ϕ is the k-th element of F). We call $g: F \rightarrow \mathbb{N}$ a super-length function on F if for every $\psi \in F$, $0 \leq g(\psi) - l(\psi)$ and $g(\psi) - l(\psi) \leq g(\psi) - l(\psi)$ provided $l(\psi) \leq l(\psi)$. We call F regular with respect to g if $j \leq 4g(A)$ for any formula $\Box\phi\theta\phi$ derived from A by axiom necessitation.

Lemma 4.17. If F is an $S4^4$ proof regular with respect to a super-length function g, then there exists an $S4^4$ proof F' such that for every formula $\phi \in F$, $\Box\phi^{g(\phi)}$ is in F'.

Furthermore, F' is regular with respect a super-length function g', where for any formula $\phi \in F$, $g'(\phi) = 4g(\phi)$, and if ϕ is the conclusion of F, $g'((\Box\phi^{g(\psi)}) = 4g(g(\psi) + 1)$.

Proof. We will construct an $S4^4$ proof F' by inductively adding up to three formulas after each formula ϕ of F such that $\Box\phi^{g(\phi)}$ is added. If ϕ is an axiom, then add $\Box\phi^{g(\phi)}$. If ϕ is derived from $\psi\rightarrow\phi$ and ψ, then add formulas $\Box(\psi\rightarrow\phi)\phi\rightarrow(\Box\phi\rightarrow\Box\phi)$, $\Box\phi\rightarrow\Box\phi$, $\Box\phi$ after ϕ with $j=4g(\psi)\rightarrow\phi$, $k=4g(\psi)$, and $i=4g(\phi)$. Finally, if $\phi \equiv \Box\phi\theta\phi$ is derived from A by axiom necessitation, add formulas $\Box\phi\theta\phi\rightarrow(\Box\phi\theta\phi)^{i}$, $\Box(\Box\phi\theta\phi)^{j}$ with $i=4g(\phi)$, which is larger than j since F is regular. Then it can be checked that F' is an $S4^4$ proof. Also, let $g': F' \rightarrow \mathbb{N}$ be the function such that $g'(\phi) = 4g(\phi)$ if $\phi \in F$, $g'(\psi) = 4g(\phi) + i$ if ψ is not the conclusion of F and is the i-th formula to be added right after ϕ in the procedure ($i \leq 3$), and $g'(\Box\phi^{g(\psi)}) = 4g(g(\psi) + 1)$ if ϕ is the conclusion of F. Then F' is regular with respect to g'.

Proposition 4.18. (inductive method) Every $S4^4$ proof F can be extended to be a proof in $S4^4$.

Proof. Let l be the length function of F, and F_{ϕ} denote the initial segment of F up to ϕ. It is sufficient to prove that for every formula $\Box\phi^{4k}$ derived from the k-th element of ϕ by the j-th application of necessitation, F_{ϕ}^{4k} can be extended to an $S4^4$ proof F_{j} of $\Box\phi^{4k}$ with F_{j} regular with respect to a super-length function g_{j} such that for any formula $\psi \in F_{\phi}^{4k}$, $g_{j}(\psi) = 4l(\psi)$. The proof is by induction on j, and to simplify the discussion, $(\Box\phi^{4k})$ is assumed to be $l(\phi)+1$. Suppose $\Box\phi^{4k}$ is derived from ϕ by the first application of necessitation, then F_{ϕ} is also an $S4^4$ proof of ϕ and regular with respect to its length function, and hence, by Lemma 4.17, F_{ϕ} can be extended to an $S4^4$ proof F_{j} of $\Box\phi^{4k}$ regular with respect to a function g_{1} such that $g_{1}(\phi) = 4l(\phi)$ for any $\phi \in F_{\phi}^{4k}$. The base case is proved. Now suppose $j > 1$ and $\Box\phi^{4k-1}$ is derived from ϕ by the $(j-1)$-th application of necessitation. By Induction Hypothesis, there is an $S4^4$ proof F_{j-1} of $\Box\phi^{4k-1}$ regular with respect to a super-length function g_{j-1} such that $g_{j-1}(\theta) = 4^{j-1}l(\theta)$ for any $\theta \in F_{\phi}^{4k-1}$. Now we can appeal in order formulas which are not in F_{ϕ}^{4k-1} but in F_{ϕ} to F_{j-1} to form an $S4^4$ proof ϕ regular with respect to a function g' such that $g'(\theta) = g_{j-1}(\theta)$ if $\theta \in F_{j-1}$ and $g'(\theta) = 4^{j-2}l(\theta)$ otherwise. Then applying Lemma 4.17 again, the induction step and the proof is complete.

Proposition 4.19. (structural method) Every $S4^4$ proof F can be extended to a proof in $S4^4$.

Proof. We will lengthen the proof F inductively such that either the formula $\Box\phi$ will be added after the i-th non-
conclusion formula \(\phi \) of the proof, or if \(\Box \phi' \) is an R2-formula and \(\phi \) is not an axiom, we can redirect it such that it is still derivable in the lengthened proof but not from \(\phi \) by necessitation rule anymore. Then the resulting sequence is an S4\(^{\Delta} \) proof. If \(\phi \) is an axiom, we add \(\Box \phi' \) right after \(\phi \). If \(\phi \) is derived from the \(j \)-th element \(\psi \rightarrow \phi \) and \(k \)-th element \(\psi \), we add formulas \(\Box(\psi \rightarrow \phi)^j \rightarrow (\Box \psi^k \rightarrow \Box \phi') \) and \(\Box \psi^k \rightarrow \Box \phi' \) after \(\phi \), and then either add \(\Box \phi' \), or not if \(\Box \phi' \) is an R2-formula in \(F \), such that it is derived from \(\Box \psi^k \rightarrow \Box \phi' \) and \(\Box \phi' \), which has been in the proof by induction. Finally, if \(\phi \equiv \Box \psi^j \) is derived from the \(j \)-th formula \(\psi \) in \(F \), and now is derived from some other formulas if \(\psi \) is not an axiom, we add formulas \(\Box \psi^j \rightarrow \Box(\Box \psi^j)^i \) after \(\phi \), and then add \(\Box(\Box \psi^j)^i \), or not if it has been in \(F \) derived from \(\Box \psi^j \) by necessitation, such that it is derived from \(\Box \psi^j \) and \(\Box \psi^j \rightarrow \Box(\Box \psi^j)^i \). This completes the proof.

The efficiency of the structural method over the inductive is suggested by the numerical labels employed in the proofs, but the former method only works for systems with the A2 transitivity axiom. One of the reasons for the introduction of the two methods is to show that our overall procedure for the realization theorem for LP, which will be completed in the next section, can be generalized to concern the LP-counterparts of other modal logics as well. In the inductive method, only the A2 axiom instances of the form that \(\Box A^1 \rightarrow \Box(\Box A^1)^j \) with \(A \) an axiom are used, and these instances are still realizable in the LP-counterparts of modal logical systems without the transitivity axiom.

That we carefully elaborate the numerical labels in the proofs is to show that it is possible to use \(\Delta \)-like logics to study the lengths of proofs. The original proof of the realization theorem for LP provided in [2] is based on a direct translation from cut-free Gentzen style S4 proofs to LP proofs. The difficulty of such a procedure rests on the construction of suitable proof terms for modal occurrences through the analysis of the Gentzen style proof tree, especially dealing with the applications of the right modal rule. It is proved in [5] that the original realization procedure will produce an LP proof with length exponential to the size of the initial cut-free Gentzen style proof, and can be improved such that only proofs with polynomial length are generated. Among other technical details, the improvement, where the instances of the A2 axiom of LP, \(s; \phi \rightarrow !s; (s; \phi) \), play an important role, however, can be analyzed with the same idea as the one in the improvement made by adopting the structure method instead of the inductive method in a procedure of generating S4\(^{\Delta} \) proofs from S4\(^{\Delta} \) proofs, or in a similar but simplified procedure of generating S4\(^{\prime} \) proofs from S4\(^{\prime} \) proofs.

The discussions in this subsection also imply that every non-circular proof of S4 can be extended to a non-circular proof of S4\(^{\prime} \), or S4\(^{\prime \prime} \), a supersystem of S4\(^{\prime} \), and hence imply that the realization theorem also holds for S4\(^{\Delta} \) and S4\(^{\prime \prime \Delta} \).

Corollary 4.20. Every S4\(^{\prime} \) (S4\(^{\prime \prime} \)) theorem has a non-circular S4\(^{\prime} \) (S4\(^{\prime \prime} \)) proof, and for a formula \(\phi \in L_\Box \), \(\phi \) is an S4\(^{\prime} \) (S4\(^{\prime \prime} \)) theorem if and only if there is a numerical label function \(\Delta \) such that \(\phi^\Delta \) is an S4\(^{\Delta} \) (S4\(^{\prime \prime \Delta} \)) theorem.

5 Proof Realization and the Realization Theorem for LP

5.1 Proof Realization

Now we discuss the proof realization between proofs in the variant S4-systems and their explicit LP-counterparts, and what is left for us to do is to design a procedure that can translate between proofs in S4\(^{\Delta} \)-systems and proofs in their corresponding LP-systems. Besides, as we can see, with the guide of the number labels, a quite efficient procedure can be established.

Definition 5.1 (proof assignment).

Given a sequence of formulas \(F \) in \(L_\Delta \), a proof assignment \(p \) on \(F \) assigns each pair \((\phi, i) \) for a subformula \(\Box \phi^i \) in \(F \) a proof term.

Each proof assignment \(p \) induces a translation from \(F \) to a sequence of formulas in \(L \) such that \((\Box \phi^i)^p \Rightarrow p(\phi, i).(\phi^p) \).

Here’s a classification of m-formulas in a proof.

Definition 5.2. Given a proof \(F \) in one of the S4\(^{\Delta} \) systems,

1. if axiom \(\Box (\phi \rightarrow \psi)^j \rightarrow (\Box \phi^i \rightarrow \Box \psi^k) \) is in \(F \), we call \(\Box \psi^k \) \(A1 \)-formula and the leading formula of the axiom, with \(\Box (\phi \rightarrow \psi)^j \), \(\Box \phi^i \), and ordered pair of formulas \(\langle \Box (\phi \rightarrow \psi)^j, \Box \phi^i \rangle \) as its \(\alpha \)-predecessor, \(\beta \)-predecessor, and \(A1 \)-predecessor pair, respectively,

2. if axiom \(\Box \phi^i \rightarrow \Box (\Box \phi^i)^j \) is in \(F \), we call \(\Box (\Box \phi^i)^j \) \(A2 \)-formula and the leading formula of the axiom, with \(\Box \phi^i \) as its \(\gamma \)-predecessor,\n
3. if axiom \(\Box \phi^i \rightarrow \Box \phi^i \) is in \(F \), we call \(\Box \phi^i \) \(A4 \)-formula and the leading formula of the axiom, with \(\Box \phi^i \) as its \(\delta \)-predecessor,

4. if \(\Box \phi^i \) in \(F \) is derived by necessitation (in the case of S4\(^{\Delta} \)), or by axiom necessitation (in the case of S4\(^{\prime \prime \Delta} \)), we call \(\Box \phi^i \) \(R2 \)-formula.

Definition 5.3. An m-formula in a proof can fall into more than one of the categories given in the previous definition. If a formula is in at most one of the above categories we say the formula is stable. Especially, we call an m-formula, say,
A1-stable, if it is an A1-formula only, or does not belongs to any of the above categories.

In the following definition, the notations of $o(s)$ and $\bar{o}(s)$ for some proof term s are what we used in the introduction of the systems ELP.

Definition 5.4 (characteristic proof assignment).

Each proof F in $S4^{A\Delta}$, $S4'^{A\Delta}$ or $S4''^{A\Delta}$ will be associated with a system of equations E_F for an unknown proof assignment p. The system consists of:

1. $p(\phi, i) = o(p(\psi, j) \cdot p(\theta, k))$ when $\Box \psi, \Box \theta$ is a predecessor pair of $\Box \phi$.
2. $p(\phi, i) = o(p(\psi, j))$ when $\Box \psi$ is a γ-predecessor of $\Box \phi$.
3. $p(\phi, i) = o(p(\psi, j))$ when $\Box \psi$ is a δ-predecessor of $\Box \phi$.
4. $p(\phi, i) = o(c)$, for some $c \in C$, when $\Box \phi$ is an R2-formula. We will call these the R2-equations of E_F.

A characteristic proof assignment of F is a proof assignment which satisfies all the equations in E_F. And we call a characteristic proof assignment simple, if it satisfies the minimal requirement of each condition, that is, for example, if $\Box \Box \phi, \Box \Box \psi$ is a predecessor pair of $\Box \phi$, $p(\phi, i) = p(\psi, j) \cdot p(\theta, k)$, and if $\Box \psi$ is a γ-predecessor of $\Box \phi$, $p(\phi, i) = p(\psi, j) + t$ or $p(\phi, i) = t + p(\psi, j)$ for some proof term t.

The definitions of stable formula and simple characteristic proof assignment are needed for the next subsection.

Lemma 5.5. Each proof F in $S4^{A\Delta}$, $S4'^{A\Delta}$ or $S4''^{A\Delta}$ has a characteristic proof assignment.

Proof. We will construct a characteristic proof assignment by induction on the principal labels. Let i be the smallest principal label of m-formulas in F. If $\Box \phi$ is an R2-formula, the pair (ϕ, i) is assigned with a proof constant c and otherwise, the pair is assigned with an arbitrary proof term.

Now suppose that for any $k < i$, $p(\psi, k)$ has been determined. If $\Box \phi$ is initial, then following the previous step, assign a proof constant or an arbitrary proof term to (ϕ, i). If $\Box \phi$ has only one predecessor $\Box \psi$ and which is a δ-predecessor with $p(\psi, j) = s$, let $p(\phi, i) = s + t$ for a term t. For the other cases, let S be the set of proof terms consisting of $s \cdot t$ if $\Box \psi, \Box \theta$ is a predecessor pair of $\Box \phi$ with $p(\psi, j) = s$ and $p(\theta, k) = t$, s if $\Box \psi$ is a γ-predecessor with $p(\psi, j) = s$, s if $\Box \psi$ is an δ-predecessor with $p(\psi, j) = s$, and a constant c if $\Box \psi$ is also an R2-formula. And then let $p(\phi, i) = \sum_{s \in S} s$. By this construction, $p(\phi, i)$ certainly satisfies all the equations in E_F with (ϕ, i) at the left-hand side. Continue this process until every pair is assigned with some term, then p is a characteristic proof assignment.

Theorem 5.6. H is a proof in GELP$, ELP$, or ELp if and only if there is a proof F in $S4^{A\Delta}$, $S4'^{A\Delta}$, or $S4''^{A\Delta}$ and a characteristic proof assignment p on F such that $H = F^p$.

Proof. Given a proof F in $S4^{A\Delta}$, $S4'^{A\Delta}$, or $S4''^{A\Delta}$ and a characteristic proof assignment p on F, it’s straightforward to check that $H = F^p$ is a proof in GELP \Box, ELP \Box. For the other direction, let $TM(H)$ be the set of proof terms in H, and $\eta: TM(H) \rightarrow \mathrm{B}$ be an injective function linearizing the subterm relation on $TM(H)$. Then for the translation induced by η such that $(i, \phi)^{\eta} = (\phi, i)^{(0)}, F = H^{\eta}$ is a proof in $S4^{A\Delta}$, $S4'^{A\Delta}$, or $S4''^{A\Delta}$. Now let p be the proof assignment such that for any $\Box \phi$ in F, $p(\phi, i) = \eta^{-1}(i)$. p will satisfy all the equations in E_F, in which the R2-equations are derived from H, and then p is a characteristic proof assignment p on F and F^p is H.

Definition 5.7. Given a formula or a sequence of formulas D in L_C, we call a label function $r : m(D) \rightarrow TM$ a realization on D.

Each realization r induces a translation from D to a sequence of formulas D^r in L_C such that for any $x \in m(D)$, $D^r(x) = r(x) \cdot D^r(x, x)$.

Here is the proof realization result.

Theorem 5.8. A proof D in $S4$, $S4'$, or $S4''$ is non-circular if and only if there exists a realization r such that D^r is a proof in GELP$, ELP$, or ELp respectively.

Proof. For the “only if” part, given a non-circular proof D in $S4$ ($S4'$, $S4''$), by Theorem 4.9, there is a numerical label function Δ on D such that Δ is a proof in $S4^{A\Delta}$, $S4'^{A\Delta}$, and, by Theorem 5.6, there is a proof assignment p on Δ such that $(\Delta^\Delta)^{p}$ is a proof in GELP \Box, ELp \Box. Let r be the realization on D such that for any $x \in m(D)$, $r(x) = p(\Delta^\Delta(x, x), \Delta(x))$. Then $D^r = (\Delta^\Delta)^p$, so r is what we are looking for. For the other direction, let $H = D^p$ be a proof in GELP \Box, ELp \Box. Then, by Theorem 5.6, $H = F^p$ for some proof F in $S4^{A\Delta}$, $S4'^{A\Delta}$, and some proof assignment p. It can be checked that $D = F^{p}$. So D is non-circular.

In fact, for this direction, we can directly prove it from H. If we disregard the superficial symbolic difference, language L is one of labeled modal languages L_4 with proof terms as labels. Then $D = H^\Box$ and $I_M = r$. However r will be a non-circular proof label function on D since it needs to satisfy the conditions of proof terms on the modal axiom schemes.

Definition 5.9. Given a proof D in $S4$, $S4'$, or $S4''$, a realization r on D is called characteristic if there is an increasing label function Δ on D and a characteristic proof assignment p on D^Δ such that $D^r = (\Delta^\Delta)^p$.

Corollary 5.10. \(\mathcal{H} = \mathcal{D}' \) is a proof in GELP\(^-\), ELP\(^-\), or ELP if and only if \(r \) is a characteristic realization on \(D \).

The theorem realization result between S4-systems and LP-systems immediately follows.

Corollary 5.11. An \(L_\Box \) formula \(\phi \) is a theorem of S4, S4', or S4\(^\mu\) if and only if there is a realization \(r \) on \(\phi \) such that \(\Box^r \) is a theorem in GELP\(^-\), ELPP\(^-\), or ELP, respectively.

5.2 The Realization Theorem for LP

According to the algorithmic procedures we have so far, we are able to turn an S4G proof, to an S4\(^\Delta\) proof, to an S4\(^\Delta\) proof, to an ELPP\(^-\) proof, and hence an ELPP\(^-\) proof, to a characteristic proof term, which is a supersystem of ELPP\(^-\). So given an S4 theorem \(\phi \), we are able to turn it into an ELPP theorem \(\phi^\prime \). But if we want to realize an S4 theorem exactly to an LP theorem, we need one more step. One directly way is to find an algorithm converting an ELPP proof to an LP proof by a proof term translation, but, to keep the flavor of this paper, we will determine the subclass of S4\(^\Delta\) proofs, and hence the subclass of non-circular S4\(^\mu\) proofs, called stable, which is precisely the class of proofs can be realized to LP proofs.

We call a set of m-formulas C-stable for C in \{A1, A2, A4, R2\}, if every element of the set isso. A set is stable if it is C-stable for some C.

Definition 5.12. Let \(S \) be a set of m-formulas in an S4\(^\Delta\) proof \(\mathcal{F} \). \(P_\ast(S) \) is the set of all \(\ast \)-predecessors of m-formulas in \(S \) for \(\ast \in \{\alpha, \beta, \gamma, \delta\} \) (see Definition 5.2). We say an equivalence relation \(\sim \) defined on m-formulas in \(\mathcal{F} \) is stable if it satisfies the following conditions:

1. every induced equivalence class with respect to \(\sim \) is stable,
2. given an equivalence class \(E \), for each \(\ast \in \{\alpha, \beta, \gamma\} \), \(P_\ast(E) \) is a subset of some equivalence class, and \(P_\delta(E) \) is a subset of a union of at most two equivalence classes,
3. all the equivalence classes together form a linear finite chain \(E_1, E_2, \ldots, E_n \) such that for any \(\phi \in E_i \), \(\psi \in E_j \) with \(\phi \) a predecessor of \(\psi \), \(i < j \).

A proof is stable if we can define a stable equivalence relation on the proof.

Lemma 5.13. Every stable S4\(^\mu\)\(\Delta\) proof \(\mathcal{F} \) has a simple characteristic proof assignment.

Proof. Let \(E_1, E_2, \ldots, E_n \) be a chain of equivalence classes of m-formulas in \(\mathcal{F} \) such that if \(\phi \in E_i \), \(\phi \) is a predecessor of \(\psi \in E_j \), then \(i < j \). We will construct a simple characteristic proof assignment \(p \) such that for any m-formulas in the same equivalence class, the same proof term will be assigned. The construction is by induction on the index of the equivalence classes in the chain, and we will write \(p(E_i) = t \) to mean that the proof term \(t \) is assigned to all the m-formulas in \(E_i \).

First of all, if there is an R2-formula in \(E_1 \), let \(p(E_1) = c \) for some proof constant \(c \), otherwise \(p(E_1) = v \) for some proof variable \(v \). Suppose that for any \(i < k \), \(p(E_i) \) is determined. If there is an A1-formula in \(E_k \), then since the equivalence relation is stable, there are \(i, j < k \) such that \(P_\alpha(E_k) \subseteq E_i \) and \(P_\beta(E_k) \subseteq E_j \). Let \(p(E_k) = p(E_i) \cdot p(E_j) \). If there is an A2-formula in \(E_k \), let \(p(E_k) = \neg p(E_i) \), provided \(P_\gamma(E_k) \subseteq E_i \). If there is an A4-formula in \(E_k \), let \(p(E_k) = (p(E_i) \lor p(E_j)) \) provided \(P_\delta(E_k) \subseteq E_i \cup E_j \) with \(i \leq j \). If \(E_k \) is none of the above cases, then, following the procedure of dealing with \(E_1 \), assign a proof constant or proof variable to the m-formulas in \(E_k \). One caveat here is that each time a new proof constant or a new proof variable is assigned. This step will help to create a normal realization, which will be discussed at the end of this section. Continue this process until all equivalence classes are assigned, then \(p \) is a simple characteristic proof assignment of \(\mathcal{F} \).

Theorem 5.14. An S4\(^\mu\)\(\Delta\) proof \(\mathcal{F} \) is stable if and only if there exists a proof assignment \(p \) such that \(\mathcal{F}^p \) is a proof in LP.

Proof. If \(p \) is a simple characteristic proof assignment, then it is easy to see that \(\mathcal{F}^p \) is an LP proof, and, by the previous lemma, such a proof assignment exists for a stable proof, and hence the “only if” part of the theorem is proved. For the other part, we define an equivalence relation on the set of m-formulas in \(\mathcal{F} \) such that \(\Box^r \sim 1 \Box^r \) if and only if \(p(\phi, i) = p(\psi, j) \). Put the induced equivalence classes in order, \(E_1, E_2, \ldots, E_n \), such that \(i < j \) if \(p(E_i) \) is a subterm of \(p(E_j) \) with \(p(E) \) being the proof term assigned to all the m-formulas in \(E \). Then each \(E_i \) is stable, since, if, say, there is an A1-formula in \(E_i \), then all other m-formulas in \(E_i \) must not be an A2-, A4-, and R2-formula, because the application - is the main proof term operation of \(p(E_i) \). Furthermore, \(P_\gamma(E_i) \subseteq E_j \) for some \(j < i \) with \(\gamma \in \{\alpha, \beta, \gamma\} \), and \(P_\delta(E_i) \subseteq E_j \cup E_k \) for some \(j, k < i \). Therefore \(\sim \), and hence \(\mathcal{F} \), is stable.

Definition 5.15. In an S4\(^\mu\)\(\Delta\) proof, we call an A1-formula or A2-formula standard, if there is only one axiom in the whole proof in which the formula is the leading formula, and an A4-formula standard if there are at most two axioms in the whole proof in which the formula is the leading formula. An S4\(^\mu\)\(\Delta\) proof is called standard if there is no non-standard formulas in the proof.

Lemma 5.16. Every standard S4\(^\mu\)\(\Delta\) proof is stable.

Proof. Basically, the identity relation between m-formulas is a stable equivalence relation. We can arrange the m-formulas in order based on their principal labels (the order
of the formulas with the same principal labels does not matter), and then it can be checked that the identity relation satisfies all the conditions in Definition 5.12.

Here’s the final step.

Proposition 5.17. Every $S4^{\omega \Delta}$ proof can be extended to a stable proof.

Proof. First of all, before extending the proof, if needed, the number labels will be modified. Notice that for any fixed numbers m, n, if we modify the number labels of the proof such that for any $k>m$, n is added to k, then the result is still an $S4^{\omega \Delta}$ proof (all the modal axioms are still modal axioms). Hence we can always modify the proof such that the difference between two consecutive number labels is as wide as we would like it to be.

Let $\Box \phi'$ be a non-standard m-formula in an $S4^{\omega \Delta}$ proof, and $\{\psi_j\}_{0 \leq j \leq n}$ be the class of axioms in which $\Box \phi'$ is the leading formula. We will add several formulas, including several axioms, into the proof such that for each ψ_j, it is no longer an axiom but a derived formula in the proof, and, although new axioms are included, no additional non-standard m-formulas are added to the proof. Therefore, after this procedure, the overall number of non-standard m-formulas in the proof is decreased. Continuing this process, a standard proof will be built.

The formulas we add to the proof are the following. First, we will add axioms ψ_j^i into the proof, where ψ_j^i is the axiom ψ_j with m-formula $\Box \phi'^{k+2j}$ substituting for $\Box \phi'$ as the leading formula of the axiom. The number k has to be carefully chosen such that $k+2n<i$, and for each j, $\Box \phi'^{k+2j}$ is new to the proof and ψ_j^i is still an axiom. This is the stage of the procedure where modification of the proof might be needed. We also add axioms $\Box \phi^k \rightarrow \Box \phi^{k+1}$, $\Box \phi^{k+2n-1} \rightarrow \Box \phi'$, $\Box \phi^{k+2n} \rightarrow \Box \phi'$, and $\Box \phi^{k+2j-1} \rightarrow \Box \phi^{k+2j+1}$ for $1 \leq j \leq (n-1)$. Then, we add more formulas such that ψ_j are derived from these axioms. Furthermore, some of the axioms ψ_j might be applied by the rule of axiom necessitation in the original proof, but now they are not axioms. The last step is to add more formulas with the method discussed in Proposition 4.18 or 4.19 such that $\Box \psi_j$ is also derived in the extended proof. This completes the procedure.

Theorem 5.18 (Realization Theorem).

A formula $\phi \in L_\Delta$ is an $S4$ theorem if and only if there is a realization r such that ϕ^r is an LP theorem.

In [2], a special type of realization, called normal realization, is highlighted. It requires that the negative modal occurrences of an $S4$ theorem be realized to proof variables. From the procedure we introduce here, it should be clear that only initial modalities in a proof can be realized to variables. However, this is just the case, which is witnessed by the fact that all the negative m-formulas of an $S4$ theorem can be assigned with the numerical label 0 when a cut-free Gentzen style proof of the theorem is translated to an $S4^{\omega \Delta}$ proof. Observing the Gentzen style proof, we can actually, if we want, assign different numerical labels to different negative modal occurrences to form different labeled m-formulas, and these labeled m-formulas will be kept to be initial in the derived standard $S4^{\omega \Delta}$ proof and hence realized to proof variables.

6 Discussion

The two main topics of this paper are the completeness of non-circular $S4$ proofs, and the proof realization procedure from $S4$ to LP. The logical framework of $S4^{\Delta}$ is introduced to bridge the topics. Accordingly, our work establishes a structural property of Hilbert style proofs, a subject hardly practiced in the literature yet. For LP, as we know, the proof terms can be interpreted as justification entities or explicit proofs in a formal arithmetic system. It, as well as $S4^{\Delta}$, with numerical labels interpreted as reasoning time or proof lengths, has its own area of applications and hence a logical framework worth further investigation for its own sake. But, as far as the non-circular proof is concerned, they also serve well as technical tools for the study of the structure of $S4$ proofs, with proof terms or numerical labels internally recording the relations between subformulas within a proof.

The discussions in this work can be well adapted to modal logics with cut-free Gentzen proof systems without much difficulty. Given a class of non-circular proofs with respect to a stamp of a modal logic, the procedure realizing these proofs into proofs in the explicit counterpart of the modal logic is not difficult to figure out. Even if variants of the counterpart are concerned — with necessitation or axiom necessitation; EL-like or LP-like, we have provided satisfactory algorithms to handle these cases. The only step that we need to especially take care of is a proof of the class of non-circular proof is complete; and this is equivalent to, according to the method we provide here, search for suitable Δ-counterparts of the modal rules in the cut-free Gentzen system associated to the modal logic such that these rules are derivable in the Δ-version of the modal logic from which the class of non-circular proof in discussion can be defined. At the end of this paper, we discuss the cases of modal logics $S5$ and GL as two examples.

The system of $S5^{\Delta}$ that we are going to discuss is $S4^{\Delta}$ with the addition of the following modal axiom: "$\neg \Box P \rightarrow \Box (\neg \Box P)$, $j>i$.” Although there is still no satisfying elegant cut-free Gentzen style proof system developed yet. Fitting provided one in [9] with the catch that in order to prove ϕ, it is a proof tree of $\Rightarrow \Box \phi$, instead of $\Rightarrow \phi$, to
be constructed. But this case doesn’t affect the applicability of our method. Let S5^A be the system of S4^A introduced above with the following R\Box rule instead:

\[\Box \Gamma \rightarrow \Box \Gamma', A \]
\[\Box \Gamma \rightarrow \Box \Gamma', \Box A' \]

for any \(k \), if both \(\iota \) and \(\iota' \) are empty, and for any \(k > \max(\iota, \iota') + (|\Gamma| + |\Gamma'|) \), otherwise. It can be proved that this rule and, of course, the L\Box rule are derivable in S5^A. Finally, it follows that if \(\phi \) is an S5 theorem, there is an S5^A proof of \(\Box \phi^i \) for some \(i \), and hence there is a non-circular proof of \(\Box \phi \). Applying the reflexive axiom A3, \(\Box \phi \rightarrow \phi \), and modus ponens, we produce a non-circular proof of \(\phi \).

The \(\Delta \)-versions of GL, we are going to discuss are S4^A with the axiom scheme A3 of S4^A replaced by the axiom scheme "\(\Box(F \rightarrow F)' \rightarrow \Box F^p \), \(k > f(i, j) \)" with \(f(i, j) = i \cdot j \), or \(\max(i, j) \), respectively. That is, we consider three versions of GL^A at once. Their associated cut-free Gentzen systems are S4^G without the L\Box rule and with the following R\Box rule:

\[\Box \Gamma, \Gamma, \Box A' \rightarrow \Box A' \]

for any \(k > f(0, j) \), if \(|\Gamma| = 0 \) and for any \(k > f(k', j) \) with \(k' = \max(i) + 2|\Gamma| \), otherwise, and again it can be checked that these rules are derivable in their corresponding systems of GL^A.

References